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I11. Of such Ellipsoids consisting of homogeneous matter as are capable of having the
resultant of the attraction of the mass upon a particle in the surface, and a centri-

Sugal force caused by revolving about one of the axes, made perpendicular to the
surface. By Jamges Ivory, K.H. M.A. F.R.S. L. & E. Instit. Reg. Sc. Paris.
Corresp. et Reg. Sc. Gottin. Corresp.
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1. IN the Conn. des Temps for 1837 it is announced that a homogeneous ellipsoid
with three unequal axes, and consisting of particles that attract one another accord-
ing to the law of nature, may be in equilibrium when it revolves with a proper velo-
city about the least axis. LacraNGE has considered this problem in its utmost
generality. The illustrious Geometer found the true equations from which the solu-
tion must be derived : but he inferred from them that a homogeneous planet cannot
be in equilibrium unless it have a figure of revolution. Nevertheless M. Jacosr has
proved that an equilibrium is possible in some ellipsoids of which the three axes have
a certain relation to one another. The same thing is demonstrated by M. LiousviLLE
in 23rd cahier of the Journal de [ Ecole Polytechnique. M. pE PoNTECOULANT has
also touched on the subject*. M. Jacos1 has thus detected an inadvertence into
which those had fallen who preceded him in this research. e has shown that the
equations which, according to LAGRANGE, are capable of solution only in figures of
revolution, may be solved in a certain class of ellipsoids with three unequal axes.
But the transcendent equations of M. Jacosr, although fit for numerical computation
on particular suppositions, leave unexplored the points of the problem which it is
most interesting to know.

It is easy to find a property characteristical of all spheroids with which an equili-
brium is possible on the supposition of a centrifugal force. From any point in the
surface of the ellipsoid draw a perpendicular to the least axis, and likewise a line at
right angles to the surface: if the plane passing through these two lines contain the
resultant of the attractions of all the particles of the spheroid upon the point in
the surface, the equilibrium will be possible; otherwise not. 'This will be evident, if
it be considered that the resultant of the centrifugal force and the attraction of the
mass must be a force perpendicular to the surface of the ellipsoid, which requires
that the directions of the three forces shall be contained in one plane. This deter-
mination obviously comprehends all spheroids of revolution ; but, on account of the
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58 MR. IVORY ON HOMOGENEOUS ELLIPSOIDS

complicated nature of the attractive force, it is difficult to deduce from it whether an
equilibrium be possible, or not, in spheroids with three unequal axes.

The problem is unconnected with the physical conditions of equilibrium: it is
purely a geometrical question respecting a property of certain ellipsoids.

2. Let the three semi-axes of an ellipsoid be represented by

By k1T 4202 kT4,
A being supposed greater than A'; and put x, y, = respectively parallel to the axes,
for the coordinates drawn from a point in the surface to the principal sections of the
solid : from the same point draw the line ¢ within the ellipsoid at right angles to its
surface ; and ¢ being limited by the principal section perpendicular to %, the axis of
rotation, put p and ¢ for the coordinates of the end of it in that plane, p being parallel
to y, and ¢ to z: from the condition that ¢ is perpendicular to the surface of the
ellipsoid, it is easy to deduce the values of p and ¢, viz.
A2 AR
pzy.m, q—_—;zm.

Again, from the same point in the surface, draw the line ¢ in the direction of the
resultant of the attraction of the whole mass of the ellipsoid ; and let » and s, respect-
ively parallel to ¥ and z, represent the coordinates of the foot of ¢ in the same prin-
cipal section as before: then ¢ will be the diagonal of a parallelopiped of which the
three sides are x, y — r, ¥ — s; and the only three forces acting parallel to the sides
of the parallelopiped and equivalent to the single force in the direction of the
diagonal, will be proportional to the sides, ¥, y — r, x — s. Now from the nature of
the ellipsoid, the attractive forces perpendicular to the principal sections, are propor-
tional to the coordinates «, y, 3 ; and may be represented by A x, B y, C x: and, as
these forces have their resultant in the direction of ¢, it follows from what has been
said, that they will be proportional to @, y — r, x — s. In consequence we have
these equations,

_ Y — 7. C,
A= 2B, A=;25.C;

r:y.(l—%), siz.(l-—%):

and, by combining the values of » and s with those of p and ¢ before found, we ob-
tain

A
r—p _ Yy B — 1+ A2
s—q¢  x A

C—15m

Let ¢ denote the third side of the triangle which has ¢ and ¢ for its other sides:
then o will represent the only force which, together with the attractive force ¢/, will
produce a resultant in the direction of ¢ at right angles to the surface of the ellipsoid.
Now ¢ cannot stand for a centrifugal force unless, in every position, it be invariably
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parallel to the line /%% + 22 drawn from the point in the surface of the ellipsoid at
‘right angles to the axis of rotation; and this condition requires that the triangle of
which the sides are ¢, » — p, s — ¢, shall be similar to the triangle formed by the
parallel lines /%% + 22, y, z. From the similarity of the triangles, we deduce

TP _ Y,

s—gq "
and hence, in consequence of the last formula, we finally obtain,
PR =CmTom e e
Every ellipsoid which verifies this formula is capable of an equilibrium when it is
made to revolve with a proper angular velocity about the least axis; for the line ¢
representing the attraction upon a point in the surface, the line ¢ will represent a
centrifugal force, both in quantity and direction; and the resultant of these two
forces will be perpendicular to the surface of the ellipsoid.

The equation (1.) results immediately from the investigation of Laarance, who
concluded that it admits of solution only in spheroids of revolution, that is, when
A= and B = C. By expressing the functions A, B, C in elliptic integrals, M. Ja-
cosI has found that the equation may be solved when the three axes have a certain
relation. It is therefore demonstrated in general, that a certain class of ellipsoids
with three unequal axes is susceptible of an equilibrium on the supposition of a cen-
trifugal force; but it still remains to investigate the precise limits within which this
extension of the problem is possible, and to determine the ellipsoid when the centri-

B —

fugal force is given.

3. In order to solve the problem in the view now taken of it, we must have re-
course to the equations of Lacraxee, which contain all the necessary conditions.
Let " denote the intensity of the centrifugal force at the distance equal to unit from
the axis of rotation; the same force urging the point in the surface of the ellipsoid
at the distance /%% - 22 from the axis, will be equal to fs/? + =2, the components
of which in the directions of y and x are respectively fv and fz. Now

Az, By, Cx,

are the attractions of the mass of the ellipsoid ; wherefore the total forces urging the
point in the surface are

Az, B=f)y, (C—f)=
These forces must have their resultant in the direction of ¢ perpendicular to the sur-
face of theellipsoid ; and as they are parallel to the sides of a parallelopiped, of which
e is the diagonal, they will be proportional to those sides, that is, to

Yy i
x) 3/_]9:]‘_‘_)\2’ z~q=l+)\l‘2'
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We thus obtain these two equations,

B—f 1 C—f 1
A T 1+ A T TN

and from these we deduce

fB1+>?’_}
A @)
f=C—1w |

which coincide with the equations of LAGRANGE.
It is next requisite to substitute for the symbols A, B, C, what they stand for. The
values given in the Mécanique Céleste are in a convenient form for this purpose, viz.

2da
dF = VI 222 . (1 + 2229
3M 3M 1 dTF 3M 1 dF
=B dF B = 0o 1+ A%a? C= B Jo 1 + A2

In these expressions M is the mass of the ellipsoid ; therefore if we put ¢ for the den-
sity, we shall have

=

Al

M= (1) (4

These several values being substituted in the equations (2.), the result will be

_ S )
1= i
3 ¢
_ 14 A" LA, 32%da (1 — 2?) S (3.)
.q—\/l +}\Q'_/0' (1—[—)\2.1'2)%(14—)\’2.2:2)"}?’
__\/1+>\2 Loy, Smﬂdx(l—ﬁ) _
7= 1+7~’Q o (14 a%a%)3 (1 + A%2%)% J

Here ¢ stands for the proportion of the intensities of the centrifugal and attractive
forces ; it depends only on the kind of matter of which the spheroid is formed, and
the velocity of rotation.

4. The equations (3.) comprehend all ellipsoids that are susceptible of an equili-
brium on the supposition of a centrifugal force. To begin with the more simple case
of the spheroid of revolution, let A = A" = /; and the two equations will coincide in

one, Vviz.
12.3242(1—a%)dx
9"./c: S T IR (4.)

which expresses the relation between ¢ and /, in a spheroid of revolution having its
semi-axes equal to & and k+/T + £

From the equation (4.) we learn that ¢ will be known when Zis given, or that every
spheroid of a determinate form requires an appropriate velocity of rotation.
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The inspection of the same equation is sufficient to show that ¢ is positive for all
values of /2; and as it vanishes both when /2 is zero and infinitely great, it must pass
at least once from increasing to decreasing, or it will admit of at least one maximum
value. By differentiating with regard to / we obtain

1822 (1 — 28 (1 —0a?
=/ CBap 5 o oo ()

. dg . . ..
from which formula we learn that;é—l% is positive between the limits #2 = 0 and

2 =1; that it will consist of a positive and a negative part when /2 is greater
than 1; and the positive part decreasing while the negative part increases, that it

will ultimately be negative when /2 is infinitely great. It follows therefore that gwig 7

can be only once equal to zero, and consequently that ¢ can have only one maximum
value, while /2 increases from 0 to w. Applying to the equations (4.) and (5.) the
known method of integration, we get

3 (3 IAd 9

g:ié%—)arctanl—gﬁ,
dg 309+ . 319 +78
GIdi= " aon alctanl——~—“1+lg 7

of which expressions the first will verify the other. To determine the maximum of ¢,
we have

91478
' L+ O+8)°
and the only value of / in this last equation is
{ = 25293.
By substituting this value of / we obtain 0-3370 for the maximum of ¢. With respect
to spheroids of revolution it thus appears that an equilibrium is impossible when ¢

arc tan [ =

or Z{—~ is greater than 0'3370: in the extreme case, when ¢ is equal to 03370, there

3 f

is only one form of equilibrium, the axes of the spheroid being

kand k§/1 4 (2:5293)2 = 27197 k;
but when ¢ is less than 0°3370 there are two different forms of equilibrium, the equa-
torial radius of one being less, and of the other greater, than 2:7197 £, % being the
semi-axis of rotation.

The number of the forms of equilibrium in spheroids of revolution is purely a ma-
thematical deduction from the expression of ¢; and as this has been known since the
time of Macraurin, the discussion of it was all that was wanted for perfecting this
part of the theory.
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5. Returning now to the general equations of the problem, let
! V{1 + 2. (1 + AP
= 2dx. 3
¢ '/0‘ 3x X 4/(1+}‘9‘Z,3).(1+N2x2)
and it will be found that the two equations (3.) are thus expressed :

de do
9= 1=

Further, put p = a2, 72 = (» — %)%, and we shall have
1 ‘ T rpF F 2
q):f 3atdx. V(l+p)?+7 ;
V) V(l—l—pwg)l—}-rgxa
and the two values of ¢ in the partial differentials of ¢ relatively to A and A" being ex-
pressed in the partial differentials relatively to p and 2, we shall obtain

do d o
q”‘d}\.x—dp Td*r(x ?\’)7\’

o d¢ ! d‘P ! !
=gt = a'p T d T (=)l
These two values of ¢ coalesce in one when A — ' = 0, that is, in spheroids of revo-
lution ; and we thus fall again upon the same equation that has already been dis-
cussed. In all other cases the two values cannot subsist together, unless

do -
q=dp]9: 6
_MJ...............,(.)
O_'rd"r’

which equations apply exclusively to ellipsoids with three unequal axes, and solve the

problem with regard to that class. The latter of the equations (6.) expresses the re-

lation that the two quantities p and 72 must have to one another in every ellipsoid

with three unequal axes which is susceptible of an equilibrium. The fluxional ope-

ration indicated being performed in the same equation, the result will be,
(1=a°)(1—p x‘z)da

0 l + px,)z + 72 xa)v

0= (7.)
which is no other than a transformatlon of the equation (1.), and is equivalent to
other transformations of the same equation found by M. Jacosr and M. LiousviLLe.

The formula (7.) cannot be verified unless p, or A ¥, be greater than 1; for if p
were equal to 1, or less than 1, the integral would be positive. This agrees with the
limitation of M. JacosI.

If any value be assigned to 72, it is evident that a corresponding value of p may be
found which will verify the formula (7.): for, if p be made to increase continually
above 1, the integral, which is positive at first, will finally be negative; and it must
be zero, in passing from one of these states to the other. 'This proves that there does
exist an infinite number of ellipsoids not of revolution, which are susceptible of an
equilibrium.
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Let V stand for the integral in the equation (7.); and supposing that p and 72 vary
so as always to satisfy that equation, we shall have

dVv dv
g;dp+;—d‘;7'd7=0-

Now, 72 representing any positive quantity, we may conceive it to increase from zero
to be infinitely great; in which case it follows from the nature of the functionV,

. . dV . .
that during the whole increase —— 7 d 7 will be negative: wherefore the other term

% d p will be positive; which requires that p decrease continually. Since p de-

creases when 72 increases, the greatest value of p will answer to the least value of 72,
that is, to zero; and hence, by making #2 = 0 in the formula (7.), we shall obtain

this equation, viz.
f 2°(1 —a?) (1 — _‘Z)f%x
K (4 pwﬁ)i”

for finding the greatest value of p.

It is obvious that there is only one value of p that will verify the equation just
found ; for the integral can pass only once from being positive to be negative while
p increases from 1 to be infinitely great. Let p = /2, lx = z; and the equation will
be changed into this which follows, A

fl dz(lQ 3 — l+l4)°'4+lgzs>

(1 + =P

of which the integral is,

14+ 2P Sz+5:° S4+14L 4301 L ds
=g S _3 .
0=0x+ 8 (1 + 2% 8 o 1+ &%

and hence, by making ¢ = /, we deduce

S1+ 138
arc tan [ = CRNRE VYR
The only solution of this equation is / = 1:3934 ; and 19414 is therefore the greatest
value of p = /2. Thus, in all the ellipsoids susceptible of an equilibrium by revolving
about the least axis, A A’ = p is contained between the limits 1'9414 and 1, while
(A — #")2 = 72 increases from zero to be infinitely great.

An elliptical spheroid formed of a homogeneous fluid, can be in equilibrium by the
action of a centrifugal force, only when it revolves about the least axis. What has
been said determines completely the series of ellipsoids with which an equilibrium is
possible, when the three axes are unequal. Representing these axes by

B, ka/142% k«/1442
it has been shown that 2 A’ must be contained between the limits 1°9414 and 1, while
(» — )2 varies from zero to be infinitely great. One limit is when A = ¥, being a
spheroid of revolution of which the axes are

kand k /29414 = k X 17150.
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Supposing 2 and 2’ to vary from this extreme, when the first increases, the other will
decrease; so that, when A is infinitely great, A’ will be zero; which proves that the
other extreme limit is a cylinder extending indefinitely on either side of the base,
which is a circle having 4 for its radius.

6. It remains to consider the value of ¢. In the first of the equations (6.), let the
operation indicated be performed, and the result will be

_f p-32(1 —a®da. {(1+p)(1 +pa®) +pr2a®}
0 (V4 p2 + ) (0 + a2+ 2a)t
and from this we obtain the value of ¢ in the extreme case when 2 = 0, or when 2
and ' are equal, viz.

__('p.82%(1 — 2P da

Yo (L +pa?)® 7
which is no other than the determination of ¢ in a spheroid of revolution having its
axes equal to

kand k+/29414 = k X 1'7150.
In the other extreme case, when 2 is infinitely great, ¢ is zero.

It has been shown that for every given value of #2 there is only one value of p,
and only one ellipsoid ; and when 72 and p are both ascertained, the foregoing ex-
pression proves that ¢ is fully determined. Thus there is an appropriate value of ¢
to every ellipsoid susceptible of an equilibrium.

In the formula for ¢, one of the two quantities, #2 and p, increases when the other
decreases; and hence it may be surmised that more than one ellipsoid may answer
to a given value of ¢. Some calculation is necessary to elucidate this point. For
the sake of abridging expressions, put

P=A/(1 4+ p)*+ ¢
Q=+(1 +pa?)? + 2 a?
M=p (1 +p) (1 +pa®)+p*ea?
du=32%(1 — 2% dux,
the variation of d u being between the limits * = 0 and x = 1: then, the foregoing
value of ¢ will be thus written:

du.M
9 PQ.‘ H
and, ¢ being considered a function of p and 2, the fluxion with respect to p will be
___/‘ dM A+pM 322l +pa®) MY |

E PQ dn = P? - Q? } .
it will be found that

1+ M 1 —2

( PZ;) p (1 +p&°2)— PQP -T)’

2 Q2 4 — 2 2
3a® (1 agpx)M=3px2(l+p) _Spua 82 P x);
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wherefore

H=(p+3) .S G+ 5 fdua -

72 2Q2a2 + Sat — 3 p?af
+75 . S du. A

in consequence of the formula (7.) the first term is zero, so that we have

_— 6 4
———w_/.du(l—wz)-l—p - fdu 2t 3*‘47’)’35 U L

. c o dq . .
And because 3 4 4 p is always greater than p2, it follows that 7% is essentially po-

sitive.
Again, by taking the fluxion relatively to #%, we have

dg du pPa® P — PPa?Q*—3+*M
ﬂzf—fPQ;‘f'{ P Y Q@ }

dg __ p+p /d

vdT

that is,

—‘_fd (8 + 2p)a? + (Sp+€§)x4—p3x5+2pr"'x9.
Of this value the first term is zero by the formula (7.); and attending to the limits of
p and of the integral, the second term is essentially negative.
Now we have

dg=0.dp+ 1z v dv

if we suppose 72 to increase, p will decrease; and according to what has been shown
the two parts of d ¢ will be negative. Wherefore, while #2 increases from zero to be
infinitely great, ¢ will decrease continually from its first value to zero; and for every
possible value of ¢ there will be only one value of 7%, and consequently only one
ellipsoid susceptible of an equilibrium.

It would be superfluous to pursue this investigation further, and a mere waste of
labour to seek the easiest formulas for solving a problem which, it appears from what
“has been shown, can have no application in the theory of the figure of the planets.
It is extremely probable that no such figures as those required for the equilibrium
of ellipsoids with three unequal axes, will be found to exist in nature. It seems diffi-
cult to admit that any circumstances, or the action of any forces we are acquainted
with, could induce upon a mass of fluid a figure adjusted with such mathematical
nicety to the attraction of the mass and the centrifugal force. If the existence of
such a figure can be supposed, would it be permanent? Would not the least action
of the other bodies of the system upon it be sufficient to destroy the exact confor-
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mation on which the equilibrium depends, and leave the fluid to adjust its figure
solely by the attraction and the centrifugal force of its particles? The discovery of
Jacosr makes no change in the usual theory of the figure of the planets; but it is
valuable, as it completes a mathematical speculation, and finally settles what relates
to the figure of ellipsoids susceptible of an equilibrium.



